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Editorial

Science and Cultural Force

After sixty years of independence of the country, it is a legitimate question to ask what

contributions India has made to international science in general, and physics in particu-

lar, during these six decades; and how does it compare to the same in pre-independence

era. While complacency tends to stagnate the growth process, the self introspection has

the opposite effect of opening newer avenues for progress. Needless to say that in the

pre-independence era, Saha, Bose, Bhabha, Raman and J. C. Bosemade world class contri-

bution comparable to the topmost peers in the respective fields and put Indiain the interna-

tional map of science. Considering the upsurge of national sprit with the dawn of freedom,

and massive investment in the expansion of education, it is but natural to expect a loftier

attainment in science. Although the country has made a big stride in science andtechnology

in many fields, this expectation has not been adequately belied.

The foundation of western system of education was laid with the establishmentof the

three universities at Calcutta, Bombay and Madras in 1857, with emphasis to produce clerks

and officials to help in the colonial administration. Formal teaching of science commenced

towards the end of the nineteenth century. Yet, within a span of half a century or so, the

system produced such luminaries of scientists that too indigenously with scant or nomi-

nal resources should be considered mind boggling. What is the mystery behind this phe-

nomenon? The historian may explain it as an effect of renaissance, but more concretely

it is due to operation of an invisible force which may be termed as a cultural force. The

late nineteenth century and the first half of twentieth century saw the emergence of a new

ethos in the country in the form of struggle for freedom infusing the mass withthe sprit of

dedication, sacrifice, patriotism and above all an urge for excellence. Those who did not

directly participate in the independence movement and worked in the areas likescience,

literature, art etc. had to console themselves by excelling in their chosen fields.

Besides the above cultural force which can be considered as internal, being character-

istic of contemporary Indian society, there was an external force at work in the country. It

is the British science culture. India was a colony of Britain since 1757 and assuch formed

a part of the British Empire, and therefore shared its culture in science. The microscopic

number of teachers in colleges and universities in India, who were practicing science, were

regarded as member of the science fraternity of Britain. Up to the end of Second World War,

Britain was the centre of gravity of international science and Proceedingsof Royal Soci-



ety was regarded as the core international journal. It was fairly easy for Indian scholars to

get access to leading British universities. The Indian scientists were also getting patronage

from their British counterparts in adequate measure.

The Nobel Prize of C. V. Raman would have slipped to Russian physicist but for the

timely support of Ernest Rutherford from Cambridge. The story of legendary mathemati-

cian Ramanujan is too well known to be repeated here. These two cultural forces acted

in unison enabling the enterprising Indian scientists to overcome the formidablebarriers

of meager opportunity and isolationism in their home country and achieve laurels of high

order in international science.

Today India has about 500 universities, compared to meager 17 universities at the time

of independence. It has about 20,000 colleges, more than a dozen of IITs and IISERs and

a couple of hundred specialized institutions dedicated to research and strong national com-

mitment for liberal support. There is a clamour in various fora that good students are not

opting for career in research but preferring more lucrative professions in IT, Medical and

Engineering etc. In research and innovation Indias performance is disappointing. In a sur-

vey of 130 countries, it is ranked only 41 in the innovation index with Malaysiaand China

ranking at 25 and 37 respectively and Singapore and Korea in the top 10. Massive invest-

ment in higher education and research is offered as the panacea for thisdismal situation.

Although it is only a part of the remedy the core of the problem is the weak cultural force

pervading our academic institutions. An atmosphere bereft of fear, oppressiveness, hatred,

jealousy and feudalism but charged with dedication urge for creativity, high academic val-

ues, mutual love and respect; fraternity feeling and cooperativeness can be created only by

the teachers and scientists working in the institutions which no outside agency or abundance

of funding can achieve. This is the soul of the institutions while the body is the physical

infrastructure generated by money only. Such a cultural force nurtured and nourished over

years can become traditions inspiring its members and lifting them upwards in the realm of

higher academic attainment. Any short time visitor to such institutes will feel upliftedand

inspired coming under the spell of such atmosphere. Harvard and Cambridge have been

successful in creating it over centuries of dedication by its members. Institutes of modest

means and infrastructure have achieved excellence and acquired laurels in the past and are

continuing to do so in the present time on the strength of such cultural force.

L. Satpathy
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TURNING POINTS

Solar Seismology & Solar Neutrinos

S.M. Chitre
DAE-Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai

Abstract. The Sun has been aptly described as the ‘Rosetta Stone’ of Astronomy, and its internal and external
layers have provided an ideal cosmic laboratory for testing atomic and nuclear physics, high-temperature,
plasma physics and magnetohydrodynamics, neutrino physics and even general relativity. Even though the
interior of the Sun is not accessible to direct observations, it is nonetheless possible to unravel its internal
constitution with the help of equations of mechanical and thermal equilibrium governing its structure together
with the boundary conditions provided by observations. The outstanding question is the correctness of the
theoretically constructed solar models. As it turns out the solar interior is transparent to neutrinos released in
the thermonuclear reaction network operating in the energy-generating core and also to seismic waves generated
throughout the solar body, and these serve as complementary probes furnishing reasonably accurate information
about the inside of the sun.

1 INTRODUCTION

The sun has played a major role in the development of mathematics and physics over the past sev-
eral centuries. Thus, Kepler’s laws provided the framework for the planetary motions under the
influence of the Sun’s gravitational field, laying the foundation for the Newtonian mechanics. Dur-
ing the following centuries, Newton’s theory of gravitation successfully explained the phenomena
of planetary motions and the precession of their elliptical orbits. Indeed, by the end of nineteenth
century the measurements were so refined that the unaccounted precession of Mercury’s orbit was
found to be close to 43 seconds of arc per century. The agreement between the prediction of the gen-
eral theory of relativity and the observed precession of the perihelion of Mercury was considered a
great triumph for Einstein’s geometrical formulation of gravitation. Another remarkable prediction
of general theory of relativity was the gravitational deflection of light rays from the background star
grazing the solar limb, measured to a reasonable accuracy to have a value close to 1.75 arc seconds
(twice the Newtonian value) during the total solar eclipse of 1919. Likewise, a longer transit time for
radio waves propagating close to the Sun through its deep potential well, was also amply verified. It
is evident that the Sun has played a significant role in providing the verification of tests of general
relativity and its widespread acceptance.
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The proximity of our star enables us to make a close enough scrutiny of its surface and the overly-
ing atmosphere, providing extensive data of high spatial resolution about its surface features which
is clearly not feasible for other stars situated far away from us. A century or so ago all that was
known about the Sun was from the study of its visible layers and indeed, the early astronomers had
noticed that the solar disk was dotted with dark blotches on its otherwise immaculate surface. These
sunspots were, in fact, known to the Chinese and Greek astronomers, but it was Galileo who made
scientific observations of the march of these dark regions across the solar disk. The appearance of
these spots first in mid-latitudes (∼30 ˚ ) and the migration towards the equator in the cyclical man-
ner with a period of approximately 11 years before their disappearance have been systematically
recorded, resulting in the well known “Butterfly” diagram due to Maunder. Solar astronomers have
still not fully understood the processes that drive the solar activity cycle as well as the reversal of
the Sun’s global magnetic field.

The solar atmosphere has a rich display of spectacular fireworks and complex phenomena which
can be witnessed in their dazzling splendour during the occurrence of a total solar eclipse. Thus,
we observe for a few seconds the chromosphere as a firey red ring around the disk just before and
after totality, followed by the appearance of the pearly white solar corona which changes its shape
synchronously with the activity cycle, forming a jagged ring around the Sun at the peak of the
activity cycle, and transforming into plumes and streamers at the phase of solar minimum.

2 STRUCTURE OF THE SUN

In Solar Physics the early investigations were largely devoted to an extensive collection of spec-
troscopic data in order to study the surface chemical composition, temperature and pressure. The
spectroscopy of the solar surface revealed the presence of spectral lines of elements such as carbon,
nitrogen, oxygen, silicon, sodium, magnesium, iron, etc. The helium was, in fact, first discovered in
the spectrum of the Sun before it’s existena was known in the laboratory. The spectroscopy of the
chromospheric regions overlying the solar photosphere, during a total solar eclipse, established that
hydrogen is the most abundant element in the Sun with helium being the next with one in ten atoms
and heavier elements at the level of approximately one percent.

With this knowledge of the surface chemical composition, solar physicists turned their attention
to working out the internal structure of the Sun. It was widely believed for several centuries that
the interior of the stars shielded by the layers of material beneath the visible surface will never be
accessible. It is, therefore, a triumph of the theory of stellar structure that it has been possible to
construct a reasonable theoretical model for inferring the physical conditions inside the Sun with
the help of mathematical equations governing the mechanical and thermal equilibrium together with
boundary conditions provided by observations.
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SOLAR STRUCTURE EQUATIONS

Mechanical equlibrium:

dP (r)
dr

= −Gm(r)
r2

ρ(r)

dm(r)
dr

= 4πr2ρ(r)

Here, P (r) is the pressure, ρ(r) the density and m(r), the mass interior to the radius, r, for a
spherically symmetric Sun.
Thermal equilibrium:

dL(r)
dr

= 4πr2ρ(r)ε,

where ρ is the energy generation rate per unit mass and L(r) = 4πr2(Frad + Fconv) is the solar
luminosity maintained by the nuclear energy generated throughout the solar interior. Here Frad and
Fconv are respectively the radiative and convective fluxes of energy.
Energy transport:
The energy generated by the nuclear reaction networks is transported from the central regions to the
surface where it is radiated into the space outside. In the inner two-thirds of the solar interior by
radius the energy transported by radiative processes is given by

Frad = −4acT

3kρ

dT

dr

Here a is the Stefan-Boltzmann constant, c the speed of light and k the opacity of solar material.
In the zone extending approximately one third of the solar radius below the surface the radiative
temperature gradient becomes unstable to convection. The convective flax modeled in the simplified
framework of a local mixing-length formulation is expressed as

Fconv = −ktρ
ds(r)
dr

,

where kt is the turbulent diffusivity and s(r), the entropy.
The outstanding question was how to check the correctness of these theoretically computed solar

models and indeed, to enquire how the Sun shines with the energy generation by thermonuclear
processes in its central regions.

The advent of the high-speed computers enabled the numerical integration of structure equations
with the auxiliary input of physics supplemented by appropriate physical boundary conditions. For
this purpose the Standard Solar Model (SSM) has been widely used assuming the Sun to be a spheri-
cally symmetric object with negligible effects of rotation, magnetic fields, mass loss and tidal forces
on its global structure. A quasi-stationary state is supposed to be maintained with the mechanical
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and thermal equilibrium throughout the solar interior. The energy generation takes place in the solar
core by nuclear reactions which convert hydrogen into helium.

NUCLEAR REACTION NETWORKS

Proton-proton chain

p + p → d + e+ + νe (≤ 0.42 MeV)
p + e− + p → d + νe (1.44 MeV)
p + d → 3He + γ

pp − I 3He + 3He → 4He + 2p
3He + p → 4He + e+ + νe (≤ 18.8 MeV)

pp − II 3He + 4He → 7Be + γ
7Be + e− → 7Li + νe (0.38, 0.86 MeV)
7Li + p → 8Be + γ
8Be → 24He

pp - III 3He + 4He → 7Be + γ
7Be + p → 8B + γ
8Be → 8Be + e+ + νe (≤ 14.6 Mev)
8Be → 24He

Carbon-Nitrogen-Oxygen cycle

12C + p → 13N + γ
13N → 13C + e+ + νe (≤ 1.2 MeV)
13N + p → 14N + γ
14N + p → 15O + γ
15O → 15N + e+ + νe (≤ 1.7 MeV)
13N + p → 12C + 4He

or
15O + p → 16O + γ
16O + p → 17F + γ
17F → 17O + e+ + νe (≤ 1.7 MeV)
17O + p → 14N + 4He (≤ 1.7 MeV)

The energy so generated in the central regions is transported outwards principally by radiative
processes through bulk of the solar body, except for the region extending about a third of the solar
radius below the photosphere where the energy flux in carried largely by turbulent convection mod-
elled in the framework of a mixing length theory. It is assumed that there is no mixing of nuclear
reaction products outside the convection zone, apart from the slow gravitational settling of helium
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and heavier elements by the process of diffusion beneath the convection zone into the radiative in-
terior. There is supposed to be no other mode of energy transport such as a wave motion and the
standard nuclear and neutrino physics is adequate for designing solar models. The objective is to
reproduce the present luminosity and radius after evolving the Sun, assuming the mass of the model
is conserved with no accretion or mass loss.

In the theory of solar structure and evolution it is common to assume the mass of the Sun, M� =
1.989 × 1033 gm and initial homogenous chemical composition, namely, hydrogen abundance by
mass of 72%, helium by mass of 26% with a small admixture of heavy element abundance by
mass 2%. The numerical computations, performed with two adjustable parameters, namely, the
initial helium abundance and the ratio of the mixing length to the local pressure scale-height, then
evolve the Sun to yield the present luminosity, L� = 3.846 × 1033 erg s−1 and the radius, R� =
6.599×1010 cm, after 4.6 billion years, the inferred age of the Sun. It turns out from the evolutionary
calculations that there is a substantial variation of physical quantities across the solar body with the
temperature varying from 5700 ˚ K at the surface to upwards of 150 million degrees at the centre
and likewise, the density changing by nine orders of magnitudes. The principal question confronting
the theorists is whether there is any way of ascertaining these variations. Are there any means of
measuring the central temperature and undertaking the chemical spectroscopy of the solar interior!
This was very aptly described by Eddington: “At first sight it would seem that the deep interior of
the Sun and stars is less accessible to scientific investigation than any other region of the universe.
Our telescopes may probe farther and farther into the depths of space, but how can we ever obtain
certain knowledge of that which is hidden behind substantial barriers? What appliance can pierce
through the outer layers of a star and test the conditions within?”

3 WINDOWS ON THE SUN’S INTERIOR

31 Solar Neutrinos

The measurement of neutrinos present in the reaction network operating in the central regions of the
Sun was the first probe conceived to infer the physical conditions in the solar core. The neutrino
fluxes are very sensitive to the temperature and composition profiles prevailing inside the Sun. It
was, therefore, expected that the steep temperature dependence of some of the nuclear reactions
involved in the production of electron neutrinos would provide a handle to determine the Sun’s
central temperature to an accuracy of better than a few percent. The main thrust for setting up
an experiment to measure the solar neutrino fluxes was “to see into the interior of a star and thus
verify directly the hypothesis of nuclear energy generation in stars”. Bruno Pontecarvo was the first
scientist who made the proposal for using the chlorine detector for measuring the solar neutrino
fluxes.

There have been valiant efforts undertaken since the 1960’s to set up experiments designed for
the exceedingly difficult measurement of neutrino counts from the Sun. Ray Davis’s Chlorine ex-
periment located some 4850 feet underground in the Homestake gold mine in South Dakota, USA
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was the first such as attempt to count the solar neutrinos. It has a tank containing 615 tons of liq-
uid perchloroethylene in which the chlorine nuclei serve as solar neutrino absorbers, sensitive to
intermediate and high energy neutrinos, according to the reaction:

37C1 + νe → 37Ar + e − (threshold = 0.814 MeV)

The Homestake solar neutrino experiment fulfilled the objective of the “use of a radically different
observational probe to reveal wholly unexpected phenomena”. In fact, Daxis’s Chlorine experiment
has been reporting measurements of the solar neutrino counting rate (2.56 ± 0.23 SNU, where 1
SNU = 10−36 captures per target atom per second) which are at variance with the count rate of 7.6
± 1.2 SNU predicted by the Standard Solar Model. This puzzling deficit in the neutrino counting
rate, by nearly a factor of 3 over the SSM prediction, constitutes the missing solar neutrino problem
which had been haunting the community for well over three decades.

There have been a number of ingenious theoretical proposals to account for the observed deficit
in the solar neutrino flux: partial mixing of material in the solar core which brings additional fuel
of hydrogen and helium into the energy-generating regions, thus maintaining the nuclear energy
production at a slightly lower temperature; the presence of a small admixture of Weakly Interacting
Massive Particles (WIMPs) in the solar core, effectively contributing to an increase in the thermal
conductivity and in the process diminishing the temperature gradient required to transport the flux;
a rapidly rotating solar core; a centrally concentrated magnetic field and even a lower heavy element
abundance. All these proposals led to a slight reduction in the central temperature causing lowering
of the high-energy neutrino flux.

A quarter of a century following the running of the Homestake Chlorine experiment, a Japanese
set-up consisting of a 680 ton water tank was located about 1 km underground in the Kamioka mine
was designed to detect charged particles by measuring Cerenkov light through the elastic scattering
reaction (where x stands for electron, muon or tau neutrinos):

νx + e− → νx + e−(threshold = 5 MeV)

The Kamioka and the upgraded Superkamiokande experiment are sensitive only to the high en-
ergy 8B neutrinos released by the proton-proton chain of nuclear reactions. The measured flux from
the Japanese experiment is again deficient by about a factor of 2 over the total flux predicted by the
Standard Solar Model. It is evident that the Homestake and Superkamiokande experimental results
are inconsistent with the proposition of resolving the solar neutrino puzzle with a lowering of the
central temperature. Such a reduction in the central temperature will lead to even larger suppression
of the high-energy 8B neutrino flux to which the Superkamiokande experiment is exclusively sensi-
tive because of the extremely high temperature dependence of the 8B neutrino rate. The Homestake
experiment detects the intermediate as well as high energy neutrinos from the Sun and paradoxically,
records even a fewer neutrinos! Thus, we can eliminate a cooler solar core as viable solution for the
solar neutrino problem.

Apart from these two set-ups there were three other radiochemical experiments: GALLEX, SAGE
& GNO that use gallium detectors for the reaction:
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71Ga + νe → 71Ge + e−(threshold = 0.233 rmMeV ).

These are capable of detecting the low-energy pp-neutrinos, and report measurements of the solar
neutrino counting rate, on an average of 74.7± 5.0 SNU. The predicted neutrino capture rate for the
gallium experiments is 128± 8 SNU, again showing a deficit in the measured neutrino counting rate.
Over the past four decades, carefully executed experimental efforts and increasingly more refined
theoretical models have only confirmed the discrepancy between the measured and theoretically
computed neutrino fluxes. It is now widely accepted that none of the three experimental results from
Chlorine, Water Cerenkov and Gallium were consistent with one another, provided we assume the
neutrinos to have standard physical properties, namely, no mass and hence no magnetic moment and
no flavour-mixing during their journey from the site of generation in the energy-generating solar
core to their detection here on Earth, and also that the Sun is in thermal equilibrium maintaining an
unvarying luminosity. There are, in fact, general considerations independent of any underlying solar
models which can demonstrably lead to unphysical situations such as a negative flux of beryllium
neutrinos!

A possible resolution of this puzzling conundrum is to endow neutrinos with a tiny mass and
permit the transformation of neutrino flavours during the course of their transit through the interior
of the Sun and of the Earth, or through the interplanetary space in between. A direct consequence
of such a proposal is that a fraction of electron neutrinos which are the exclusive by-products of
the thermonuclear reaction network generating the solar energy would then go undetected in the
existing solar neutrino experiments. This raises the exciting possibility of non-standard neutrino
physics being responsible for the reported deficit in the measured neutrino fluxes and for invoking
the need to go beyond the Standard Model of Particle Physics. The first compelling evidence for
such neutrino oscillations and flavour mixing came from the analysis of Superkamiokande data
on the high-energy cosmic ray - produced neutrinos in the terrestrial atmosphere. The Japanese
experiment measured the difference in the up and down fluxes of neutrinos produced by the cosmic
ray interaction with molecules in the Earth’s atmosphere to demonstrate that neutrino oscillation,
indeed, takes place during interaction with matter. This asymmetry in the up and down neutrino
fluxes arises because of the passage of upward moving neutrinos through the solid mantle of Earth,
while the downward moving neutrinos, coming from overhead after getting freshly generated in the
terrestrial atmosphere, are less likely to undergo any flavour oscillations.

The measurements reported by the Sudbury Neutrino Observatory (SNO) seem to provide con-
vincing evidence that the electron neutrinos generated in the solar core, indeed, change from one
flavour to another during their journey from the Sun to Earth. The SNO experiment located at a
depth of over 6000 meters in Sudbury, Canada uses 1000 tons of heavy water containing the deu-
terium isotopes of hydrogen for detecting solar neutrinos. Note the Superkamiokande detector uses
ordinary water for capturing the neutrinos. In both the ordinary and heavy water, neutrinos can elas-
tically scatter electrons to produce Cerenkov radiation, but such electron scattering can be caused
by any of the three neutrino flavours: electron-, muon- and tau- neutrino. The Sudbury Neutrino
Observatory is capable of measuring the 8B neutrinos through the following reactions:

νe + d → p + p + e− (charged current)
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νx + e− → νx + e− (elastic scattering)
νe + d → νe + p + n (neutral current)

In both ordinary and heavy water detectors neutrinos can elastically scatter electrons to produce
the Cerenkov radiation, but such electron scattering may be caused by any of the three neutrino
flavours. However, SNO’s heavy water detector is capable of isolating electron neutrinos, because
that flavour alone can be absorbed by a deuterium nucleus to produce two protons and an elec-
tron. Note the neutral current reaction is equally sensitive to all the neutrino flavours, while the
elastic scattering has significantly lower sensitivity to mu- and tau- neutrino flavours. Remarkably,
SNO has reported the elastic scattering count rate which matches the Superkamiokande event rate
to within experimental errors and SNO’s count of the charged current reaction which is sensitive
exclusively to the electron-neutrino flavour is lower than the SNO / Superkamiokande event rate
recording all the three flavours. This unambiguous difference at the level of 1.666 in the 8B flux
deduced from the charged current and elastic scattering rates demonstrates that some of the electron
neutrinos manufactured in the Sun’s energy generating core are transformed into other types of neu-
trino flavours by the time they reach the experimental setups here on Earth. Furthermore, the total
8/B neutrino flux as measured by the neutral current reaction in the SNO experiment is in satisfactory
agreement with that predicted by the Standard Solar Model. These experimental measurements have
reassured solar physicists that the simplified theoretical models of the Sun are essentially correct.
Clearly, a resolution of the long standing solar neutrino problem should be sought in the realm of
particle physics by endowing neutrinos with a tiny mass. It is worthwhile to recall that even though
there is a remarkable agreement between the predicted neutrino production rates by the solar models
and the direct measurement of neutrino counts by various experiments, we still have some processes
ignored in the construction of the theoretical models, like the occurrence of possible mixing in the
radiative interior, or the presence of a magnetic field concentrated in the solar core, or perhaps heat
transport by waves or WIMPS . Equally, some of the auxiliary input physics such as the nuclear reac-
tion rates or the abundance of heavy elements and consequently, the opacity could be in error! This
has prompted the community to explore an independent complementary tool to probe the physical
conditions within the solar body and this was provided by the seismic studies of the Sun.

32 Solar Seismology

The solar surface undergoes a series of mechanical vibrations which are observed as Doppler Shifts
oscillating with a period centered around 5 minutes. These have now been identified as acoustic
modes of pulsation of the entire Sun. They represent a superposition of millions of standing waves
with mode amplitude of the order of ∼ few cm/s with the frequencies of these modes determined
to an accuracy of better than 1 part in 105. The accurately measured oscillation frequencies provide
very tight constraints on the admissible solar models. This requires continuous observations over
very long periods of time and is achieved with the help of ground-based networks like the Global Os-
cillation Network Group (GONG) comprising six stations located in contiguous longitudes around
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the world, as well as with the satellite-borne instruments such as the Michelson Doppler Imager
(MDI) on board the Solar and Heliospheric Observatory (SOHO).

A major task that was accomplished by inverting the accurately measured seismic data of oscilla-
tion frequencies was a fairly reliable inference of the acoustic structure of the Sun. The profile of the
sound speed was determined through bulk of the solar interior to an accuracy of better than 0.1 %
and the density profile to a somewhat lower accuracy. The agreement between the sound speed pro-
file deduced from helioseismic inversions and the SSM is remarkably close except for a pronounced
discrepancy near the base of the convection zone and a noticeable departure in the energy-generating
core. The hump at the base of the convection zone may be attributed to a sharp change in the gra-
dient of helium abundance profile on account of diffusion-which can smoothed out by a moderate
amount of rotationally–induced mixing immediately beneath the convection zone. The dip in the
relative sound speed difference between the inverted sound speed profile and that from SSM around
r = 0.2 R� may be due to ill-determined composition profiles in the SSM, possibly resulting from
the use of inaccurate nuclear reaction rates or our inadequate understanding of the diffusion process
or even because of the presence of WIMPS!

From the seismic data accumulated over the past decade the depth of the outer convection zone is
deduced to be (0.2865 ± 0.0005) R� and the helium abundance in the solar envelope is estimated
to be 0.249 ± 0.003. The seismic structure of the Sun so surmised was based on the equations of
mechanical equilibrium, while the equations of thermal equilibrium have not be employed so far,
largely because on oscillatory time scales of several minutes, the oscillatory, modes are not expected
to exchange significant amount of energy. The solar oscillation frequencies are thus largely unaf-
fected by thermal processes in the interior. Nevertheless, for determining the thermal and chemical
composition profiles one needs to supplement the seismically inferred structure by the equations of
thermal equilibrium together with the auxiliary input physics like the opacity of solar material, equa-
tion of state and nuclear energy generation rates. It is remarkable the inverted sound speed, density,
temperature and composition profiles and consequently, the neutrino fluxes come out to be in close
agreement with those given by the Standard Solar Model. A striking feature that emerges from these
computations is that assuming standard properties of neutrinos but allowing for arbitrary variations
in the input opacities and relaxing the requirement of thermal equilibrium, it turns out to be difficult
to construct a seismic model that is simultaneously consistent with any two of the existing solar
neutrino experiments within two standard deviations of the measured fluxes. This suggested that the
persistent deficiency between measured and predicted solar neutrino fluxes was mostly likely due
to the non-standard neutrino physics. It is, therefore, tempting to suggest that helioseismology may
be regarded to have highlighted the importance of the Sun as a cosmic laboratory for studying the
novel properties of neutrinos.

It should be noted that the inverted profiles also enable a determination of the luminosity of the
Sun with the use of equation of thermal equilibrium. Such a computed luminosity may not, of course,
match with the observed solar luminosity, L�, and this discrepancy may be effectively utilized to
provide a test of the input nuclear physics. In particular, it can be demonstrated that the cross-section
of the proton–proton reaction needs to be increased slightly to (4.06 ± 0.07) × 10−25 MeV barn.
The seismic model provides a handle on the central temperature of the Sun which is found to be (15.6
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± 0.4) × 106 ˚ K, allowing for upto 10% uncertainty in the input opacities (Antia & Chitre 1995).
It can also help in determining the chemical composition profiles in the solar interior, The inferred
helium profile turns out to be in reasonably good agreement with that in the SSM which incorporates
diffusion into the radiative interior, except in the regions just beneath the convection zone where the
profile is essentially flat. This is indicative of some sort of a mixing process operating possibly on
account of a rotationally induced instability. It is interesting to recall that the temperature at the base
of the solar convection zone is <∼ 2.2 × 106 ˚ K which is not high enough to burn helium. However,
should there be some mixing of material extending a little into the interior to a radial distance of 0.68
R�, temperature approaching 2.5 × 106 ˚ K will be reached for the lithium abundance observed at
the solar surface.

Helioseismology has made it possible to determine the rotation rate in the interior from the ac-
curately measured frequency splittings. The first order effect of rotation arising from the Coriolis
force yields splittings which depend on odd powers of the azimuthal order, and these odd splitting
coefficients can be effectively used to infer the rotation rate as a function of radius and latitude. In-
terestingly, it is found that the differential rotation observed at the solar surface persists through bulk
of the convection zone; while in the radiative interior the rotation rate is largely uniform . There are
two prominent shear layers: a sub-surface layer extending to a depth of about 35,000 km beneath
the photosphere and a narrow transition region (tachocline) with a width of approximately 7000 km
near the base of the convection zone.

The helioseismically inferred rotation rate is, indeed, consistent with the measured solar oblate-
ness of approximately 10−5 . The resulting quadrupole moment then turns out to be (2.18 ± 0.06)
× 10−7, implying a procession of the perihelion of Mercury’s orbit by about 0.03 arcsec / century,
while the observed precession is close to 43 arcsec / century, thus clearly demonstrating tenability
of the general theory of relativity. The even order terms in the splittings of solar oscillation frequen-
cies represent the acoustic asphericity of the Sun. This presumably results from the presence of a
large-scale magnetic field or a latitude-dependent thermal fluctuation in the solar interiors and this
information should provide an effective probe of the eternal magnetic field of the Sun.

With accumulation of the helioseismic data from GONG and MDI for more than 11 years covering
the cycle 23, it is now possible to study temporal variations in the solar interior with solar activity.
It has, in fact, been demonstrated that the oscillation frequencies shift by upto 0.4 microhertz during
the course of the cycle with the maximum frequency shift occurring near the peak of solar activity.
Furthermore, the frequency variations are found to be correlated with various solar activity indices.
It appears that most of the temporal variations in the solar structure are confined to a shallow sub-
surface layer and there is no significant change in the interior.

It is widely believed that the differential rotation plays a crucial role in driving of the solar dy-
namo and consequently, it is important to investigate temporal variations in the rotation rate. Indeed,
time variation of the surface rotation rate with the solar cycle was earlier established by Howard &
La Bonte . Their observations, in fact, demonstrated a surface pattern of torsional oscillations with
bands of faster and slower than average rotation drifting slowly from mid-latitudes towards the equa-
tor and with a striking correlation with the magnetic “butterfly” diagram. It has now been possible
with the available seismic data to study temporal variations of the rotation rate in the convection

174 Prayas Vol. 3, No. 6, Nov. - Dec. 2008



zone. For this purpose the temporal average of the rotation rate at each radius and latitude is sub-
tracted from the rotation rate, at any given epoch, inferred from inversion of the data over the relevant
time interval to obtain the residual. This time-varying component of the rotation rate reveals a pat-
tern similar to the torsional oscillations detected at the surface with alternating fast and slow bands
migrating equatorward and poleward from the mid-latitudes and penetrating practically to base of
the convection zone.

The current efforts in helioseismology are aimed at probing the magnetic field structure inside
the Sun which should shed light on processes driving the cyclic magnetic activity and also locating
the seat of the solar dynamo. It is hoped that the accumulating seismic data will enable us to study
the temporal variation of acoustic mode frequencies and amplitudes reflecting the time-dependent
changes in the solar structure and dynamics. In the process we may learn how the magnetic field
configuration changes with the activity cycle and identify the mechanism responsible for causing
the solar irradiance to vary synchronously with the sunspot cycle.

Yet, the present account will be incomplete without a reference to the recent downward revision
of spectroscopic determination of solar photospheric abundances of Oxygen and other heavy ele-
ments causing a serious discrepancy between the standard solar models constructed with the new
abundances and the seismically inferred model. This uncertain spectroscopic measurement of heavy
element abundance, Z in the solar envelope has prompted efforts to determine seismically the value
of Z which comes out to be 0.0172 ± 0.002 thus alleviating the discrepant results.

In conclusion, the two complementary probes, namely the painstaking measurement of solar neu-
trino fluxes and the accurately determined acoustic oscillation frequencies have demonstrated con-
vincingly the remarkable concordance between the Standard Solar Model and the Seismic Solar
Model. It then became evident that the long-standing solution for the solar neutrino problem is not
to be sought in the realm of astrophysics, but rather in the domain of neutrino physics, implying
neutrinos to have non-standard properties such as a non-zero mass.
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Abstract. In this paper, we describe a very simple method to calculate the positions of the planets in the
sky. The technique used enables us to calculate planetary positions to an accuracy of 1◦ for ±50 years from
the starting epoch. Moreover, this involves very simple calculations and can be done using a calculator. All
we need are the initial specifications of planetary orbits for some standard epoch and the time periods of their
revolutions.

Communicated by A.M. Srivastava

1. INTRODUCTION

The night-sky fascinates people. To be able to locate a planet in the night sky is something that
thrills people. Since the planets move with respect to the background stars and continuously change
their positions in the sky, locating them in the sky could appear be a non-trivial task. It is a general
notion that calculating the planetary positions is a very tedious task, involving a lot of complicated
mathematical equations and computer work. However, to be able to locate planets in the sky one
does not really need very accurate positions. After all, Kepler’s laws, which describe planetary orbits
reasonably well, are mathematically simple. Hence, one could use Kepler’s law to predict planetary
positions in which mutual influence of planets is not considered. Thereby an accuracy of ∼ 1◦ in
planetary positions would be achieved.

In this project, we employ a very simple method to calculate the positions of the planets. The
technique we use enables us to calculate planetary positions to an accuracy of 1◦ for ±50 years
from the starting epoch. Moreover, this involves very simple calculations and can be done using
a calculator. All we need are the initial specifications of planetary orbits for some standard epoch
and their time periods of revolution. Although accurate planetary positions could be obtained easily
from the internet, yet it is very instructive and much more satisfying to be able to calculate these
ourselves, starting from basic principles and using a simple procedure.

Our first step would be to calculate the positions of all the planets (including Earth) in their orbits
around the Sun. We initially consider the planets to revolve around the Sun in uniform circular
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motions. Knowing their original positions for the starting epoch, we calculate their approximate
positions for the intended epoch.

As a consequence of this approximation there will be an error since the actual orbits are elliptical.
To get more accurate positions, we require some corrections, which are derived in Appendix A.
These corrections account for the elliptical motion.

Knowing the positions of the planets around the Sun, we can then use simple co-ordinate geometry
to transform their position with respect to an observer on Earth. Our task becomes simple since the
orbits of all planets more or less lie in the same plane, viz. the ecliptic plane.

In this project, we calculate the motion of naked-eye planets only, although the procedure can be
applied equally well for the remaining planets also.

2. CELESTIAL CO-ORDINATES

Figure 1. Celestial Sphere (see Reference 5)

All celestial bodies in the sky, including stars, planets, Sun, Moon and other objects, appear to
lie on the surface of a giant sphere called the Celestial Sphere, see Fig. 1. Due to Earth’s eastward
rotation around its axis, the celestial sphere appears to rotate westward around Earth in 24 hours.
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Infinitely extending the plane of Earth’s equator into space it appears to intersect the celestial sphere
to form a circle, which is called the Celestial Equator.

As Earth moves around the Sun, - as seen from the Earth - Sun changes its position with respect
to the background stars. The path that Sun takes on the celestial sphere is called the “Ecliptic”. The
familiar Zodiac constellations are just divisions of the ecliptic into twelve parts. Since all the other
planets revolve around Sun in nearly the same plane, they also appear to move on the ecliptic.

The celestial equator is inclined to the ecliptic by 23.5◦. The points of intersections of these two
circles on the celestial sphere are called the “Vernal Equinox” and the “Autumnal Equinox”. The
Vernal Equinox, also known as the Spring Equinox, is the point on the celestial sphere that the Sun
passes through around the 21st of March every year.

In astronomy, an epoch is a moment in time for which celestial co-ordinates or orbital elements
are specified, while a celestial co-ordinate system is a co-ordinate system for mapping positions in
the sky. There are different celestial co-ordinate systems each using a co-ordinate grid projected on
the celestial sphere. The co-ordinate systems differ only in their choice of the fundamental plane,
which divides the sky into two equal hemispheres along a great circle . Each co-ordinate system is
named for its choice of fundamental plane.

The ecliptic co-ordinate system is a celestial co-ordinate system that uses the ecliptic for its funda-
mental plane. The longitudinal angle is called the ecliptic longitude or celestial longitude (denoted
λ), measured eastwards from 0◦ to 360◦ from the vernal equinox. The latitudinal angle is called
the ecliptic latitude or celestial latitude (denoted β), measured positive towards the north. This
coordinate system is particularly useful for charting solar system objects.

The Earth’s axis of rotation precesses around the ecliptic axis with a time period of about 25800
years. Due to this, the equinoxes shift westwards on the ecliptic. Due to the westward shift of the
Vernal Equinox, which is the origin of the ecliptic co-ordinate system, the ecliptic longitude of the
celestial bodies increases by an amount 360/258 ∼ 1.4◦ per century.

Most planets, dwarf planets, and many small solar system bodies have orbits with small inclina-
tions to the ecliptic plane, and therefore their ecliptic latitude β is always small. Due of the planets’
small deviation from the plane of the ecliptic, the ecliptic longitude may alone suffice to locate
planets in the sky.

3. CALCULATING PLANETARY POSITIONS

3.1 Heliocentric Circular Orbit

Here, we consider the planets to move around Sun in circular orbits with uniform angular speed. In
Table 1, we have listed the period, T (days), of revolution of the planets (Nicholson, 1999). Then,
the mean angular speed is give by, ω0 = 360/T (◦/day).

To distinguish the Mean Longitude of the planet in the imaginary circular orbit from the actual
longitude, λ we denote the former as λ0.
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Table 1. Mean longitude λ0 on 01/01/2000, 00:00 UT and mean speed ω0 of planets

Planet Mean Longitude λ0 (◦) Revolution Period T (days) Angular Speed ω0 (◦/day)

Mercury 250.2 87.969 4.09235

Venus 181.2 224.701 1.60213

Earth 100.0 365.256 0.98561

Mars 355.2 686.980 0.52403

Jupiter 34.3 4332.59 0.08309

Saturn 50.1 10759.2 0.03346

The epoch values of mean longitudes (λ0) of the planets given here (Table 1) are for 1st of January,
2000 A.D at 00:00 UT (adapted from Fränz and Harper, 2002).

We now demonstrate how to calculate λ0 for Mars on 1st January 2007.
λ0 of Mars on 01.01.2000 at 00:00 UT = 355.2◦ .
No. of days b/w 01.01.2000 and 01.01.2007 = 2557 days.
Mean angle traversed duration this period = 0.52403× 2557 = 1339.9◦.
So, λ0 on 01.01.07 at 00:00 UT = 355.2 + 1339.9 = 255.1◦.1

In the same way, mean longitudes of all planets have been calculated in Table 2 for the same
epoch. For a comparison, we have listed the actual longitude values (λe) from Indian Ephemeris
(2007) for that epoch. Here, we see, from the difference in Column 4, that one has to correct for the
elliptical shape of the orbit, at least for some of the planets.

Table 2. Mean longitude λ0 on 01/01/2007, 00:00 UT

Planet Mean Longitude λ0 (◦) Ephemeris value of Longitude λe (◦) Difference (◦)

Mercury 274.3 268.7 +5.6

Venus 317.8 317.8 0.0

Earth 100.2 100.2 0.0

Mars 255.1 244.5 +10.6

Jupiter 246.8 242.6 +4.2

Saturn 135.7 140.2 -4.5

3.2 Heliocentric Elliptical Orbit

Before we make corrections for the elliptical shape of the orbit we need to know the orientation
of the ellipse within the ecliptic and that can be defined by the longitude of the perihelion.2 Lon-

1We have taken out the integer number of complete orbits.
2Perihelion is the point on the elliptical orbit closest to the Sun, while aphelion is the point farthest from Sun.
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gitudinal distance of the planet in its orbit from the perihelion is known as its Anomaly (denoted
by θ), while angular distance of mean position of planet with respect to the perihelion is called
the Mean Anomaly (denoted by θ0). As has been discussed in Appendix A, there is a one–to–one
correspondence between θ and θ0, and that the correction Δθ to be added to θ0 (Equation 4) is,

Δθ = 2 e sin θ0 +
5
4

e2 sin 2θ0

where e is the eccentricity of the ellipse.
Let’s consider Mercury on 01/01/07 at 00:00 UT.

Mean longitude, λ0 = 274.3◦

Perihelion Longitude, λp = 77.5◦

Mean anomaly, θ0 = λ0 − λp = 196.8◦

1st order correction, 2e sin θ0 = 2 × 0.2056× sin(196.8◦) = −0.11885 rad = −6.8◦

2nd order correction, 5
4e2 sin 2θ0 = 1.25 × (0.2056)2 × sin(33.6◦) = 0.02924 rad = 1.7◦

Δθ = (1st order correction) + (2nd order correction) = −6.8 + 1.7 = −5.1◦

Anomaly, θ = θ0 + Δθ = 196.8 − 5.1 = 191.7◦

Precession of vernal equinox in 7 yrs = 7 × 360/25800 = 0.1◦.
λ = λ0 + Δθ + precession of vernal equinox = 274.3 − 5.1 + 0.10 = 269.3◦.

In the same way we can obtain the corrected longitudes for the remaining planets, which are listed
in Table 3. Also listed are the longitude of perihelion, λp, mean anomaly, θ0 and eccentricity e of
elliptical orbits of planets (taken from Fränz and Harper, 2002).

Table 3. Corrected longitude λ on 01/01/2007, 00:00 UT

Planet λ0 (◦) λp (◦) θ0 (◦) e Δθ (◦) θ (◦) λ (◦) λe (◦) Error (◦)

Mercury 274.3 77.5 196.8 0.2056 -5.1 191.7 269.3 268.7 0.6

Venus 317.8 131.6 186.2 0.0068 -0.1 186.2 317.9 317.8 0.0

Earth 100.2 102.9 357.3 0.0167 -0.1 357.2 100.2 100.2 0.0

Mars 255.1 336.1 279.0 0.0934 -10.8 268.3 244.5 244.5 0.0

Jupiter 246.8 14.3 232.4 0.0485 -4.2 228.2 242.6 242.6 0.0

Saturn 135.7 93.1 42.6 0.0555 4.5 47.1 140.3 140.2 0.1

From Table 3, we see that the errors now are indeed smaller than 1◦.

3.3 Geocentric Perspective

Until now, we have calculated the longitudes λ of the planets on the celestial sphere centered on the
Sun. We can also calculate radii r of their orbits around the sun, giving their positions in polar form
(r, λ). To get the positions of planets on the celestial sphere centered on the Earth, we convert the
polar co-ordinates into rectangular form and after shifting the origin from Sun to Earth, we change
them back into polar form.
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For converting into a rectanagular form, we have to decide upon the direction of the X and Y axes.
We assume X to be in the positive direction along the line joining the Sun to the Vernal Equinox,
and Y to be perpendicular to X in the ecliptic plane in such a way that the longitude is a positive
angle.

3.4 An Example

As an example, this procedure is demonstrated for Mercury’s position on 01/01/07 at 00:00 UT.

1 Heliocentric Co-ordinates

Distance, r, of Mercury from Sun can be obtained from anomaly θ as,

r =
a(1 − e2)
1 + e cos θ

= 0.464A.U.,

where a = 0.387A.U. is the length of semi–major axis of its elliptical orbit. Thus heliocentric
polar co-ordinates of Mercury are (0.464 A.U., 269.3◦). Then we can get heliocentric rectangular
co-ordinates of Mercury as,

Xh = r cos(λ) = −0.006 A.U.
Yh = r sin(λ) = −0.464 A.U.

Similarly we get heliocentric rectangular co-ordinates of Earth as,
X0 = −0.174 A.U.
Y0 = 0.968 A.U.

2 Geocentric Co-ordinates

Geocentric rectangular co-ordinates of Mercury then are
Xg = Xh − X0 = 0.168 A.U.
Yg = Yh − Y0 = −1.432 A.U.

Converting these into polar form, we get the geocentric distance and longitude as,
rg =

√
(X2

g + Y 2
g ) = 1.442

λg = tan−1(Yg/Xg) = 276.7◦.
We give the calculated geocentric longitudes, on 01.01.07 at 00:00 UT, of other planets in Table 4.

Comparing with the geocentric longitudes from ephemeris λge, it can be seen that the errors are
much less than 1◦.

We have ignored any perturbations on the motion of a planet due to the effect of other planets
which may distort its elliptical path. We are able to get the accuracy of < 1◦ for long periods (±50
years) because most of the terms ignored in the heliocentric longitude calculations are periodic in
nature and do not grow indefinitely with time (see e.g., Simon et al, 1994). The other parameters
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Table 4. Geocentric longitude λg on 01/01/2007, 00:00 UT

Planet a (A.U.) e r (A.U.) λ (◦) rg (A.U.) λg (◦) λge (◦) Error (◦)

Mercury 0.387 0.2056 0.464 269.3 1.44 276.7 276.5 0.2

Venus 0.723 0.0068 0.728 317.8 1.62 296.1 296.1 0.0

Earth 1.00 0.0167 0.983 100.2 – – – –

Mars 1.52 0.0934 1.51 244.5 2.38 258.4 258.4 0.0

Jupiter 5.20 0.0485 5.36 242.6 6.17 248.2 248.2 0.0

Saturn 9.55 0.0555 9.17 140.3 8.44 144.6 144.5 0.1

characterizing the elliptical orbit, like the longitude of the perihelion, semi–major axis and eccentric-
ity etc. change so slowly with time that for the accuracy we are interested in, these can be considered
constant for ±50 years.

4. LOCATING PLANETS IN THE SKY

Now that we have calculated the geocentric longitudes of the planets, we are in a position to locate
them in the sky. Any one familiar with the Zodiac constellations could locate the planet from its
position in the constellation in which it lies. The ecliptic is divided into 12 Zodiac signs – Aries,
Taurus, Gemini, Cancer, Leo, Virgo, Libra, Scorpio, Sagittarius, Capricorn, Aquarius, Pisces. The
Vernal equinox, a zero ecliptic longitude, is the start of the first Zodiac sign and is also known as
the First Point of Aries. But there is a caveat here. Because of the precession the vernal equinox
has shifted westward by almost the full width of a constellation in the last ∼ 2000 years since when
the Zodiac signs and constellation were perhaps first identified. As a consequence, the First Point of
Aries now lies in the constellation Pisces. For example, on 01/01/2007, geocentric longitude 276.7◦

of Mercury implies it is in the 10th Zodiac sign, which lies in Sagittarius constellation, taking into
account the shift by one constellation due to precession. There are further complications. The twelve
constellations are not all of equal length of arc along the ecliptic longitude. Moreover there is another
constellation, viz. Ophiuchus, through which the ecliptic passes. However these complications are
somewhat set aside by the fact that there are only about half a dozen stars in the Zodiac with an
apparent brilliance comparable to the naked–eye planets, therefore with some familiarity of the
night-sky, one could locate the planets easily from their geocentric longitude values. It further helps
to remember that unlike stars, the planets, because of their large angular sizes, do not twinkle.

For a more precise location of a planet we can calculate its relative angular distance from the Sun
along the ecliptic. For this we would require the geocentric longitude of the Sun. The position of
Sun on celestial sphere, as seen from Earth, is exactly in opposite direction to the position of Earth
as seen from the Sun.

Geocentric longitude of Sun = Heliocentric longitude of Earth + 180◦

The difference in the geocentric longitude of the planet from that of the Sun tells us about its
apparent position in the sky with respect to the Sun. If the longitude of the planet is greater than the
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longitude of the Sun then the planet’s position lies to the east of the Sun. That means that its rise
time will be later than that of the Sun and it will also set after the Sun. So the planet will be visible
in the evening sky. On the other hand, if the geocentric longitude of the planet is smaller than of
the Sun, it will rise before the Sun and set also before it. Hence, this planet will be visible in the
morning sky towards the east. As a demonstration, position of Mars with respect to Sun on 01.01.07
at 00:00 UT is calculated here:

Geocentric longitude of Sun = 100.2 + 180 = 280.2◦ (from Table 4)
Geocentric longitude of Mars = 258.4◦ (from Table 4)
Since longitude of Mars is smaller than that of the Sun, it lies to the west of the Sun. Therefore

Mars lies ∼ 22◦ west of the Sun on the ecliptic on this date.
As Earth completes a rotation in 24 hours, the westward motion of the sky is at a rate 15◦/ hour.

This rate is strictly true for the celestial equator. However we can use this as an approximate rotation
rate even for the ecliptic, which actually is inclined at a 23.5◦ to the equator. Therefore Mars will
rise 22/15 ∼ about one and half hour before the Sun.

Similarly, Venus, which lies ∼ 16◦ east of the Sun, will set on that day a little more than an hour
after the sunset. This way, one can easily locate the planets in the sky by knowing their positions
with respect to the Sun.

5. CONCLUSIONS

It is a general notion that calculation of position of planets in the night sky is a difficult job, which
can be accomplished only by complex scientific computations, using fast computers. The motive
of this project has been to bring out the fact that such complex and accurate computations are not
always really necessary. One can calculate the position of planets using the method derived here and
get the thrill of finding the planet at the predicted position in the night sky.

We have been able to obtain the position of planets within an accuracy of 1◦, using a calculator.
This method can be used to reckon planetary positions up to ±50 years of the starting epoch.
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APPENDIX A: CORRECTING FOR THE ELLIPTICAL ORBIT

We compute the correction for motion of a planet in an actual elliptical orbit from that in an imagi-
nary circular orbit.

Prayas Vol. 3, No. 6, Nov. - Dec. 2008 183



Period of revolution in circular orbit is taken to be exactly the same as that in the elliptical orbit.
The origin of the mean longitude in circular orbit is chosen such that λ0 coincides with the longitude
λ of the planet when it is at the perihelion in its elliptical orbit. For mathematical convenience, we
take t = 0 at that instant. Then λ0(0) = λ(0). Let λp be the longitude of the perihelion of
the planet’s elliptical orbit. We subtract the λp from λ0 and λ to obtain what is called the “mean
anomaly” and “anomaly” respectively (denoted here by θ0 and θ, respectively) of the planet. Then

Mean Anomaly, θ0 = λ0 - λp,
Anomaly, θ = λ - λp.
Then θ0(0) = θ(0)
In circular motion, the angular speed of the planet is constant. However, in the elliptical motion,

the angular speed of the planet is not constant.
Let a time t has passed after t = 0. Then, the change in θ0 of the planet is ω0t whereas the change

in θ of the planet won’t be the same because of the variation in the angular speed along elliptical
trajectory.

Let Δθ(t) = θ(t) - θ0(t).
We know that θ0(t) and θ(t) are periodic by the same time interval, T , as T is the time period of

revolution in both the cases (elliptical and circular motion). Hence, all value of θ0(t) and θ(t) repeat
after a time period of T. Hence, θ0(t) and θ(t) have a one–to–one relation. Hence, Δθ also repeats
after time T . The uniform circular motion thus is a useful approximation because the error Δθ is
periodic with time and does not keep accummulating with time to grow to very large values.

Figure 2. Schematic of the planet in circular and elliptical motion
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To find the correction, first consider an elliptical orbit of a planet around the Sun as shown in
Fig. 2. We use the equation of the ellipse in polar co-ordinates (r, θ) where θ is the anomaly. The
equation of the ellipse then is,

r =
l

1 + e cos θ
=

a(1 − e2)
1 + e cos θ

(1)

where l = a(1 − e2) is the semi–latus rectum with a as the semi–major axis and e the eccentricity
of the ellipse. The semi–minor axis of the ellipse is b = a

√
(1 − e2).

Now, total area of the ellipse A = πab is swept in T , the time period of revolution. From Kepler’s
second law we know that the rate of area swept out by the position vector of planet (w.r.t. Sun) is a
constant. Therefore the rate of area swept is,

dA
dt

=
r2

2
dθ

dt
=

πab

T

Substituting from Equation (1), we get

2π

T
=

(1 − e2)
3
2

(1 + e cos θ)2
dθ

dt

We notice that 2π/T is nothing but the mean angular speed ω0. Therefore

θ0(t) =
∫ t

0

ω0 dt =
∫ t

0

(1 − e2)
3
2

(1 + e cos θ)2
dθ (2)

We want to get the equation in the form, θ = θ0 + Δθ, so that by adding the longitude of the
perihelion on both sides of the equation, we could get the relation between the correct longitude λ

and the mean longitude λ0.
A direct integration of Equation (2) may be very complicated. But we can expand the integrand as

a series and integrate only a few first most significant terms. A binomial series expansion is possible
because the eccentricity of an ellipse, e < 1. Also, during the expansion we drop terms of order e3

or higher.

θ0(t) =
∫ t

0

(1 − 3
2

e2 + · · ·)(1 − 2 e cos θ + 3 e2 cos2 θ · · ·) dθ

After integraion we get,

θ0 = θ − 2 e sin θ +
3
4

e2 sin 2θ + · · ·

which can be written as

Δθ = θ − θ0 = 2 e sin θ − 3
4

e2 sin 2θ + · · · (3)

However we want the r.h.s. of Equation (3) to be expressed in terms of θ0. For that we can
substitute θ = θ0 + Δθ on the r.h.s. to get,
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Δθ = 2 e sin(θ0 + Δθ) − 3
4

e2 sin[2(θ0 + Δθ)] + · · ·

Expanding in powers of Δθ and neglecting terms of order (Δθ)2 or greater (because of their small
values) we get,

Δθ (1 − 2 e cos θ0 +
3
2

e2 cos 2θ0) = (2 e sin θ0 − 3
4

e2 sin 2θ0)

Again Expanding in powers of e and keeping terms up to e2, we get,

Δθ = 2 e sin θ0 +
5
4

e2 sin 2θ0 (4)

which is the required correction term.
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Abstract. In this work, we study the phase transitions of two disjoint systems within the Bragg-Williams
approximation. First one is the phase transition of system from paramagnetic to ferromagnetic phase. We then
use the same approximation scheme to study black hole phase transition in Anti de Sitter space. This is a first
order phase transition where there is a crossover from black holes phase to Anti de Sitter phase. We argue that
this transition is nicely captured by the Bragg-Williams theory.
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1. INTRODUCTION

Phase transition is often classified by the behaviour of the order parameter around the transition
temperature. While for water-vapour transition the densityis the order parameter, for ferromagnetic
transitions, it is the magnetisation. As the name suggests,order parameter reflects the order with-in
the system. For magnetic system, at high temperature, orderis lost among the spins. Hence one
gets expectation value of the order parameter to be zero. As we tune down the temperature, at the
critical temperature, an order sets in. Consequently, below this temperature, the order parameter is
non-zero. Order parameter also helps us to charecterise thenature of the phase transition. Let us
denote the expectation value of a generic order parameter by< φ >. While for a system undergoing
second order phase transition,< φ > changes continuously around the critical temperature, fora
first order phase transition, the change is rather discontinuous. It also should be mentioned that
besides the order parameter, there are few other quantitiesthat are discontinuous around the first
order transition point. One of these is the entropy. This is due to the presence of the latent heat
during the cross over from one phase to the other.

The purpose of this project is to study two very disjoint systems showing phase transition. One
is the Ising model which has enormous impact in understanding phase transition and the other is
the phase transition involving black holes. In particular,we will see how Bragg-Williams (will
henceforth be called BW) theory apporach helps us bind these two together under a single umbrella.
We will, in sequel, also discuss how under certain approximation, BW theory reduces to Landau’s
mean field theory.
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Mean-field theory is an approximation where the order parameter is taken to be spatially constant.
In other words, this says that we neglect the spatial fluctuation within the system. Though mean
field theory often leads to answers which differ from their actual values, it has always been the first
approach taken by reseachers to predict the phase diagrams.There are various formulations of mean
field theory, but perhaps the best appreciated one is the Landau’s mean field theory approach.

In this project, we start with Ising ferromagnet with in the BW scheme [1]. After discussing
the phase diagram, we show how one reproduces Landau’s mean field theory approximation from
BW energy function. Subsequently, we apply BW approach to describe first order phase transition
involving black holes in Anti deSitter space (will be calledAdS from now on).

In the rest of this section, we brifly list down certain thermodynamical properties of black holes
and also comment about phase transition involving certain black holes1.

General theory of relativity predicts existence of black holes. They are the sources of extremely
large gravitational field. It is often said that the black holes are the objects with-in which things
can fall and can not come out. Physicists argued that the end point of collapse of massive starts
are black holes. J. Bakenstein and S. Hawking have helped us uncover close relations between
thermodynamics and black holes. Below, we list down few general properties of black holes.
(1) Black hole has singularity inside and typically it is shielded by what is known as horizon.
(2) Black holes can be distinguished from each other only by their mass (or equivalently internal
energy)M , electric or magnetic chargeQ and rotationJ . In this project we will consider holes with
Q = J = 0.
(3) Black hole has surface area (A) which depends on the size of the horizon.
(4) Bakenstein showed us that entropy (S) can be associated with black holes and it is proportional
to one-fourth of the horizon area.
(5) Hawking discovered that black hole can also have temperature (T ). This temperature is known
as Hawking temperature in the literature.
(6) Black hole obeys 0th, 1st and 2nd laws of thermodynamics.

Simplest of these black holes are the Schwarzschild black hole. It is only charectarised by
mass/energy. If we take the horizon sizer to be given byr = 2M ( We here set the Newton’s
constantG = 1. We also will set for simplicity the velocity of lingtc, Boltzman constantk andh̄

also equal to1.), then

A = 4π(2M)2 = 16πM2, S =
A

4
= 4πM2, T =

1

8πM
. (1)

It can be easily checked that the 2nd law of thermodynamicsdU = TdS is satisfied since

1Understanding black hole physics is beyond the scope of this project. However there are certain references

which might be useful. See for example [2], [3]. We here list down some well accepted results in black hole

physics and do not claim that we understand all these. We will simply use these results as a strating point to

build up a model for phase transition.
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dU = dM and TdS =
1

8πM
× 8πMdM. (2)

Here are few comments about Schwarzschild black holes. Firstly, we can think of this black holes
sitting in Minkowski space. SettingM = 0, we haveU = 0. This is taken to be the energy of the
Minkowski’s space. Secondly, we note that since themperature is inversely proportional to the mass
of the black hole, as energy increases, its temperature decreases. This is typical of theormodynamic
systems with negative specific heat. Such systems are generally unstable. Indeed, the Schwarzschild
black hole is argued by researchers to be unstable. Because of these reasons we turn our attention
to a kind of black holes which are called Schwarzschild blackholes in AdS space. We will see that
these black holes have positive specific heat with in certainrange of parameters.

We will not need to know the details of AdS space but only that it has a constant negative enery
density with respect to the Minkowski space. That is why it isoften called as negatively curved
space time. We will in general assume that this space-time is1 + n dimensional withn space-
like and 1 time-like coordinate. Black hole withM 6= 0, Q = J = 0 in this space is called
AdS-Schwarzschild black holes in literature. We only require the expressions of the energy density,
temperature and entropy density of these black holes. They are given by:

T=
nr2 + (n − 2)l2

4πl2r
, (3)

S=
rn−1

4
, (4)

E=
(n − 1)(rnl−2 + rn−2)

16π
. (5)

Herer is the horizon radius andl is associated with the energy density of the AdS space. Taking
l to infinity would take us to the Minkowski space. Note that forr → 0, E → 0. r → 0 can be
thought of as going to AdS space. This, in turn, means that theenergy density has been calculated
with respect to the AdS space. The above expressions have appeared in many papers. Here we have
taken it from [4]. AdS-Schwarszchild black holes also satisfy various laws of thermodynamics. It
can also be seen that for larger, T increases linearly withr (or in otherword with energy). Hence,
specific heat in this limit is positive and the black holes arethermodynamically stable. It has been
noted earlier by Hawking and Page that AdS-Schwerzschild black hole undergo a first order phase
transition from black hole phase to AdS phase as one reduces the temperature below a critical value.

Our aim in this project is to understand this transition with-in the BW approximation. But before
we do so, in the next section, we introduce this apporximation via Ising model inn space dimension.

2. ISING MODEL AND BRAGG-WILLIUM THEORY

Ising model is one of the simplest model which is generally used to capture the phase diagram for
ferromagnetic to paramagnetic transition. In oder to briefly introduce Ising model, let us consider
classical spin variableσi sitting at theith site of a lattice inn dimensional space.σi are allowed to
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take take vaules+1 or −1 representing spin up or spin down states respectively. The coupling is
only between two nearest neihgbour spins with strength given by+J . With this, we write the Ising
Hamiltonian as

H = −J
∑

i

σiσi+1. (6)

A useful way to chart out the phase diagram that follows from Ising model is the introduce an oder
parameterm =< σ >. At high temperature, one expectsm = 0 while at low temeprature, an order
sets in, leading tom 6= 0. We will see in the rest of the section, how a method due to Bragg-Williams
helps us to see this behaviour in a very elegant way. We follow[1] in the rest of this discussion. In
the next section, we will use this procedure to understand black hole phase transition in AdS space.

Bragg-Williams theory

Let us focus our attention to the magnetic moment of the system just described. One expects
the total magnetic moment is proportional to the total number of up spins (Nup) and down spins
(Ndown). Assuming the total number of sites asN = Nup + Ndown, we expect

m =
Nup − Ndown

N
. (7)

Since entropy is defined as the logaritm of number of states, we have

S = ln (NCNup
) = ln (NCN(1+m)/2). (8)

After simplification, entropy per unit spin can be re-expressed as

s =
S

N
= ln 2 − 1

2
(1 + m)ln (1 + m) − 1

2
(1 − m)ln (1 − m). (9)

Simplerly the energy per unit spin can be approximated as

e =
E

N
= −J

∑
i m2

N
=

1

2
Jzm2. (10)

Herez is the number of nearest neighbour sites (z = 2n in n dimension). One then construct BW
function

f(T,m) = e − Ts (11)

Using (9) and (10) one gets,

f(T,m) = −1

2
Jzm2 +

1

2
T [(1 + m) ln (1 + m) + (1 − m) ln (1 − m)] − T ln 2.

(12)

Behaviour off(m,T ) is shown in figure 1.
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Figure 1. This is plot off(m, T ) with x axis beingm. The function is ploted for

different values ofT/Jz. The top one is forT/Jz = 1.05, the middle one is for

T/Jz = 1 and the lower one is forT/Jz = .99.

Note that forT > Jz, f(m,T ) has a minimum atm = 0. ForT < Jz, minima are for finite non
zero values ofm. The symmetry in the plotm → −m is expected due toσ → −σ symmetry in
Ising Hamiltonian. The shift of the minima from0 to non-zero values start to occur atT = Tc = Jz.
Tc is identified as the critical temperature. Sincem changes continuously aroundTc, we recognise
this as a second order phase transition.

To conclude, we have seen in this section that BW theory captures the phase diagram of the Ising
model which describes the ferromagnetic transition.

3. LANDAU’S MEAN FIELD THEORY

In the previous section, we constructed the functionf(m,T ) which describes the phases not only
close toT = Tc but also away from it. This is because the magnetisation inf(m,T ) can take
arbitrary large values. However, as it is obvious that the most interesting region in the phase diagram
is aroundT = Tc. In this limit, m is close to zero. Therefore we can expandf(m,T ) in powers of
m. This leads to

f(m,T ) = −T ln 2 +
1

2
(T − Tc)m

2 +
T

12
m4 + O(m6). (13)

Note that aroundT = Tc, the coefficient ofm2 changes sign. This leads to the change in the location
of the minima as we crossTc. Such a simple power series expansion which captures many interesting
physics close toTc is known as Landau’s mean field theory approach towords phasetransition. In
general, it has a structure

f(m,T ) =

∞∑
i=0

ai(T )mi, (14)
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whereais are independent ofm and generally depende onT . In (13), we have

a0 = T ln 2, a1 = 0, a2 =
1

2
(T − Tc), a3 = 0, a4 =

T

12
, and so on. (15)

In the next section, we will use BW theory to understand the phase transition involving black
holes in AdS space.

4. BLACK HOLE PHASE TRANSITION

We are now in a position to apply BW theory for black hole. In (5), we have given the thermo-
dynamic quantities associated with the AdS black hole. Following similar method as in (12), we
get

f(r, T ) = E − TS =
(n − 1)(rnl−2 + rn−2)

16π
− T

rn−1

4
. (16)

In what follows, we want to treatr as the order parameter. It will play an analogus role of magnetisa-
tion m of the last section. To keep things simple, we also setl = 1 in the rest of discussion. Though
for anyn ≥ 4 our results are going to hold, most recent works in the literarure are forn = 4. To
understand the behaviour of the functionf(r, T ), we find out its equilibrium points. This is given
by

∂f

∂r
= 0. (17)

which gives

n − 2 + nr2 = 4πrT, (18)

leading to

T =
n − 2 + nr2

4πr
. (19)

This is the same expression of temperature (remember here wehave setl = 1) given in (5). We also
see writing (19) is a different way, that for a given temperature, non-zero minimum occurs at

r =
2πT +

√
2n − n2 + 4π2T 2

n
. (20)

This minimum to exist

4π2T 2 > n2 − n (21)

otherwise the expression in the left hand side of equation (20) will be comples. Finally, substituting
the expression of (19) in (16), we get the value off(r, T ) at the extrema. This is nothing but the
Helmholz free energy (H). The expression is given by
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H =
rn−2 − rn

16π
. (22)

We note thatH = 0 for r = 0. This will be identified asno black hole phaseasr is defined as the
horizon radius. This is also called simply as the AdS phase.H is also zero forr = 1. Between
0 < r < 1, H > 0 and forr > 1,H < 0. Since the thermodynamic system will try to minimiseH,
for r > 1, black hole is a stable phase and forr < 1, AdS is a stable phase withr = 0. This can also
be seen if we plotf(r, T ) as a function ofr for differentT . See figure 2. ForT < Tc = 3/(2π),

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.005

0.005

0.010

0.015

Figure 2. This is plot off(r, T ) with x axis beingr. The function is plotted for

different values ofT . The top one is forT = .417, the next one is forT = .467. The

one with degenerate minima is forT = Tc = 3/(2π) = .47 and the lowest one is for

T = .497.

the AdS phase is the stable phase. AtT > Tc, the black holes phase minimises the BW function.
At T = Tc both black hole and AdS phase coexist. The phase diagram is similar to what we expect
for water-vapour transition. The density,there, is discontinuous around100 degree temperature. On
the other hand, here, we have discontinious change ofr aroundT = Tc. As we increaseT beyond
Tc, r crosses over from0 to r ≥ 1. Consequently, entropy also jumps aroundTc (we note that black
hole entropy is proportional tor). From these properties, we conclude that this is afirst order phase
transition. It was discovered by Hawking and Page in 1983 in their studies of black hole in AdS
space.

5. CONCLUSION

To conclude, we have seen that BW theory helps to understand phase transitions appearing in two
completely different areas in physics. These are:

(1) Ising model of ferromagnetic to paramagnetic transition. This is a second order phase transition.
(2) Transition in gravity theories from ordinary phase (or Anti deSitter phase) to a black hole phase.
This is an example of first order phase transition.
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While in one case, magnetisation works as the order paraneter, for black hole, it is the horizon radius
acts as the order parameter.
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Abstract. The stability of topological structures (defects, textures, etc.) in an ordered medium depends on the
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media is found to be non-Abelian, further, the elements of the groups canbe split into six distinct conjugacy
classes for the prism and seven for the tetrahedron, giving rise to six and seven possible distinct non-trivial
topological structures respectively.

Communicated by ..................

1 INTRODUCTION

In an ordered medium, the stability of topological structures (defects, textures etc.) is determined
by the successive homotopy groups of the order-parameter spaceR for the medium [1]. Consider a
medium such as a liquid crystal, where the order parameter isthe orientation of the individual liquid
crystal molecule.

2 FUNDAMENTAL GROUP

The orientations of the molecule can be given by the full group of rotations in 3 dimensions:SO(3).
However, suppose that the molecule has an isometry subgroupH, that is, it remains invaraint under
any of the transformations inH. (Recall that in an ordinary (nematic) liquid crystal, the isome-
try subgroup isSO(2), the group of rotations about thez axis, together withπ rotaions aboutx
axis.) Then, the order parameter space can be represented asthe quotient groupR = SO(3)/H [1].
Henceforth, we shall assume thatH is a finite subgroup.

∗shreyas@cmi.ac.in
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It is convenient for further calculations if the order parameter space is written asR = G/H,
whereG is simply connected.

Consider the group of unit quaternions represented asSU(2). Suppose we writeu ∈ SU(2) as

u(n̂, θ) = cos

(
θ

2

)
+ n̂ · ~σ sin

(
θ

2

)
, wheren̂ is a unit vector in three dimensions andσi are the

basis quaternions. TheSU(2) → SO(3) homomorphism can be written asφ(u(n̂, θ)) = T (n̂, θ),
T denoting the 3 dimensional rotation about the axisn̂ by an angleθ[1].

Thus, ifH̃ = φ−1(H), then we can writeR = SU(2)/H̃, with the added advantage thatSU(2)

is simply connected.
By the theorem on short exact sequences[1], the fundamental group ofR is given by

π1(SU(2)/H̃) = π0(H̃/H̃0) ...(H̃0 being the connected component of the identity ofH̃).
As H̃ is finite,H̃0 is trivial, and hence,π0(H̃/H̃0) = H̃. Thus,π1(SU(2)/H̃) = H̃

We know thatSU(2), being a Lie group, is also2-simple and hence,π2(R) = π1(H̃) = 0 asH̃

is discrete. Thus, we see that the order parameter space is also 2-simple and cannot have stable point
defects (in 3 dimensions) or textures (in 2 dimensions).

3 CONJUGACY CLASSES1

By definition, the fundamental group of a spaceR is defined to be the collection of homotopy
classes of loops that arebased at a point x ∈ R. However, note that ifγ1 andγ2 are two loops
in R characterizing the same defect, thenγ1, γ2 need only befreely homotopic, that is, they should
be continuously deformable to each other without being constrained to any fixed base point. It can
be shown[1] that if f andg are two loops based at a pointx ∈ R that belong to distinct homotopy
classes, and ifc ∈ π1(R, x) is any other loop based atx such thatg = cfc−1, thenf andg are
freely homotopic to each other.

In the groupπ1(R), the set of all elementsg such thatg = cfc−1 for c ∈ π1(R) is called the
conjugacy class of f ,sometimes written as{f}. Thus, distinct topological objects are characterised
by distinctconjugacy classes of π1(R).

4 STANDARD EXAMPLES: LIQUID CRYSTALS2

41 Nematic liquid crystals

Let us now consider two standard examples of determining topological structures using the funda-
mental group: that of liquid crystals. A nematic liquid crystal molecule has full rotation symmetry,

1This section is a summary of arguments provided by Mermin, (1979)
2Summary of results presented by Mermin, (1979)
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along withπ rotation symmetry along a perpendicular axis. (The symmetry group is same as that
for a cylinder). Thus, the symmetry group isSO(2) together with antipodal points identified, that is
H = D∞. The lift D̃∞ has two connected components. Thus,π1(SU(2)/D̃∞) = π0(D̃∞) = Z2.
Thus, a nematic liquid crystal can have two non-trivial topological defects. Further, as the funda-
mental group is abelian, the defects are not equivalent.

42 Biaxial Nematics

Another standard example is that of biaxial nematic liquid crystal, whose molecules have the sym-
metry group of a rectangular box. The order parameter space can thus be written asR = SO(3)/D2,
where D2 is the dihedral symmetry group of a rectangular box. The liftof D2 from SO(3)

to SU(2) turns out to be isomorphic to the quaternion groupQ = {±1,±σ1,±σ2,±σ3} The
fundamental group ofR = SU(2)/Q is then simplyπ1(R) = Q which is non-Abelian. It
can be easily seen that the 8 elements of this group split intofive distinct conjugacy classes:
{+1}, {−1}, {±σ1}, {±σ2}, {±σ3} Thus a biaxial nematic can have five distinct, stable topological
structures.

43 Triangular prismatic symmetry

Let us consider an order parameter which has the triangular prismatic (also known as ‘dihedral’)
symmetry group. This can be, for instance, the orientation of a molecule that has triangular prismatic
symmetry. We can write the order parameter space asR = SO(3)/Dt, whereDt is the dihedral
symmetry group for a triangular prism.

We wish to characterise the dihedral symmetry group. Obviuosly, this group has six elements.
Consider a cöordinate system with the origin at the center of a triangularprism, thez axis along the
axis of the triangles, and thex-axis perpendicular to one of the ‘long’ edges. Suppose we denote a
2π

3
rotation about̂z by q, and aπ rotation about̂x by p. Then, we claim that1, p, q are generators

for the groupDt. Evidently,q, p satisfyp2 = 1 andq3 = 1. Further, it is also easy to show that they
are interrelated by the relationqp = pq2

Thus, every elementr ∈ Dt can be expressed asr = jxωy, wherex ∈ {0, 1} andy ∈ {0, 1, 2},
implying thatp, q are generators ofDt

SupposeD̃t be the inverse image ofDt under theSU(2) → SO(3) homomorphismφ, and let
the preimages of the generators1, p, q be±1,±j ±ω repectively. Then, from construction, we have
that,

j = σ1

ω = −1

2
+

√
3

2
σ3
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Observe thatj, ω satisfy the relations

j2 = −1, ω3 = +1 andωj = +jω2

Thus, anyx ∈ D̃t can be written asx = ±jxωy wherex ∈ {0, 1} andy ∈ {0, 1, 2}, implying that
j, ω are generators of̃Dt

We can now easily classify the (12) elements ofD̃t into conjugacy classes as:

{1}

{−1}

{ω, ω2}

{−ω,−ω2}

{j, jω, jω2}

{−j,−jω,−jω2}

Thus we have five distinct, nontrivial conjugacy classes whcih in turn correspond to five distinct
classes of nontrivial topological structures.

As an illustration consider a loopl in physical space that corresponds to the elementj of the
fundamental group. Further, supposex is a defect in physical space corresponding to the elementω

of the fundamental group. Now consider the resultant topological structure formed by moving the
defectx along the pathl. Then this is equivalent to the loopy = jωj−1 = jω(−j) = ω2. Thus,
moving aω-defect around aj-defect results in a defect that is equivalent toω2. Hence, as expected,
the defectsω, ω2 are not distinct and belong to the same conjugacy class.

44 Tetrahedral symmetry

Now consider an order parameter which has the tetrahedral symmetry group. Then we can write the
order parameter space asR = SO(3)/T , whereT is the tetrahedral symmetry group.

Thus, the isometry subgroup is the tetrahedron symmetry groupT , which is known to be isomor-
phic to the alternating groupA[2]

4 , that is, the group of even permutations of four distinct letters. It
has been found thatT written as a subgroup of the permutatino groupS4 can be generated by three
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permutationo elements together with the identity [2] whichwe shall callp, q, r. In the cycle notation
[3], these generators can be written as1, p = (ab)(cd), q = (ac)(bd), r = (abc) and they satisfy the
relations,

p2 = q2 = 1, r3 = 1, qp = pq, rp = pqr andrq = pr

If we represent the isometric rotations of a tetrahedron by permutations of the vertex labels, the
rotations may be represented as shown (fig. 1)

Figure 1. Tetrahedron group generators

We shall describe these rotations geometrically asp = R(m̂, π), q = R(n̂, π), r = R

(
î,

2π

3

)

(with the origin at the centre of the tetrahedron and thex-axis aligned towards the vertexd. m̂ is the
axis joining the midpoint ofcd to that ofab, andn̂ is the asis joining midpoint ofac to that ofbd).
The axesm̂ andn̂ are given as:

m̂ = − 1√
3
î − 1√

6
ĵ +

1√
2
k̂

n̂ =
1√
3
î +

1√
6
ĵ +

1√
2
k̂

Thus, any elementm ∈ A4 can be written asm = pxqyrz, wherex, y ∈ {0, 1} andz ∈ {0, 1, 2}.
(As expected, the total number of elements in the group is2 · 2 · 3 = 12)

It has also been shown [2] that the elements of this group fallinto four conjugacy classes:

{1}
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{p, q, pq}

{r, pr, qr, pqr}

{r2, pr2, qr2, pqr2}

45 Lift of A4 in SU(2)

As shown above, we are primarily concerned with the liftT̃ of A4 in SU(2). We know that the
homomorphismφ maps±u ∈ SU(2) to a single elementR ∈ SO(3). Thus, let us denote the
preimages of1, p, q, r as±1,±α,±β,±γ. As 1, p, q, r are generators for the groupT , their preim-
ages are generators of the groupT̃

Thus, we have

α = − 1√
3
σ1 −

1√
6
σ2 +

1√
2
σ3

β =
1√
3
σ1 +

1√
6
σ2 +

1√
2
σ3

γ = −1

2
+

√
3

2
σ1

and we can trivially verify the generator relations,

1. α2 = β2 = −1 andγ3 = +1

2. βα = −αβ

3. γα = αβγ

4. γβ = −αγ

Thus, now for anyx ∈ T̃ , we can writex = αxβyγz, with x, y ∈ {0, 1} and z ∈ {0, 1, 2}.
Obviously, this verifies thato(T̃ ) = 24

46 Conjugacy classes

The groupT̃ written in terms of its generators can be split into the conjugacy classes:

{1}
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{−1}

{α,−α, β,−β, αβ,−αβ}

{γ,−αγ, βγ,−αβγ}

{−γ, αγ,−βγ, αβγ}

{γ2, αγ2,−βγ2, αβγ2}

{−γ2,−αγ2, βγ2,−αβγ2}

To illustrate, consider a loopl in physical space that corresponds to the elementα of the funda-
mental group. Further, supposex is a defect in physical space corresponding to the elementγ of the
fundamental group. Now consider the resultant topologicalstructure formed by moving the defectx

along the pathl. Then this is equivalent to the loopy = αγα−1 = αγ(−α) = +βγ Thus, moving a
γ-defect around aα-defect results in a defect that is equivalent toβγ Hence, as expected, the defects
γ, βγ are not distinct and belong to the same conjugacy class.

Thus we have six distinct, nontrivial conjugacy classes whcih in turn correspond to six distinct
classes of nontrivial topological structure.

5 CONCLUSION

It has been shown (Mermin, 1979) that in a medium, arbitrary entangled line defects can be seper-
ated if and only if the fundamental group of the order parameter space is Abelian. If two distinct line
defects entangle in a medium with Abelian fundamental group, they can cross each other sponta-
neously, removing the entanglement. Thus, over time, line defects (in, for example, a nematic liquid
crystal) tend to smoothen out over time. However, in a mediumwith non-Abelian fundamental
group, seperating entanglements will give rise to further defects, and hence over time, the medium
will have more defects and more entanglements.

In the standard example of a biaxial nematic, two entagled line defects from distinct conjugacy
classes can not be seperated without leaving any trace. In the two examples that have been consid-
ered, the richer structure of the conjugacy classes impliesthat it is even less likely for two arbitrary
entangled defects to be seperated without any trace. It has been stated (Mermin, 1979) that the
property of entangled defects passing through each other can affect the elasticity of the medium.
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PROBLEMS IN PHYSICS

Readers are invited to submit the solutions of the problems in this section within two months. Correct

solutions, along with the names of the senders, will be published in the alternate issues. Solutions

should be sent to: H.S. Mani, c/o A.M. Srivastava, Institute of Physics, Bhubaneswar, 751005;

e-mail: ajit@iopb.res.in

Problems set by H.S. Mani

1. Consider an infinite parallel plate capacitor made of two plates carrying a surface charge
densityσ1 andσ2 (σ1 = σi1 + σo1 whereσi1, σo1 are the charges per unit area of the inner
and the outer surfaces of the firsst plate with a similar expressionσ2 = σi2 +σo2 for the other
plate. Find the charge distribution (σi1σo1σi2σo2 on the four surfaces in terms ofσ1 andσ2.
( we are taught the special case whenσ1 + σ2 = 0, in which case the charge resides only on
the inner surface of the parallel capacitor.)

σ
1

σ
2

Prob 1.
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2. Consider two magnetic dipoles~µ1 and~µ2 , the first one pointing along they− direction ( that
is ~µ1 = µ1ĵ)and kept at the origin~r1 = 0and the second pointing along thex-direction (that
is ~µ2 = µ2î) and is located at~r2 = dĵWe knowthat the torque acting on a magnetic moment
~µ is given~µ × ~B where ~B is the extermal magnetic field.Now notice that the magnetic field
due to~µ1 at~r2 is along−ĵ and hence the torque on~µ2is along−k̂. The magnetic field due to
~µ2 at the origin is along∩i and hence the torque on~µ1 is also along−k̂. This means both the
dipoles rotate so that their total angular momentum is along−k̂. However initially they are at
rest and carry no initial angular momentum. How do you reconcile this with conservation of
angular momentum?

µ
µ

B(due to µ B(due to µ
2 1) )

1

2

y

xO d

Prob 2.
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Solutions to the problems given in Vol.3 No.4
Solutions provided by H.S. Mani

Problem 1:
(a) An electric dipole of strengthP produces radiation when it oscillates with an angular frequency
ω. Here we are considering the dipole as an one dimensional oscillator. Using the fact that the
energy density in an electric fieldE is proportional toǫ0E2, find the power radiated by the oscillator
using dimensional analysis. ( upto a numerical factor)

(b) Consider the Hydrogen atom in which the electron goes around the proton in a circular orbit of
radius5 × 10−11m. If the emitted radiation is due to the classical formula find the time it will take
to reach the proton. ( assume the radius of the proton to be10−15m). Assume the orbit circular as it
spirals down.

(c) Consider a binary star system radiating gravitational energy because of its motion around each
other in a circular of radiusR about their centre of mass. First, prove the dipole moment for mass
vanishes about the centre of mass. Then use the relevent physical variable to write an expression for
the power emitted by the system.

(d) How would the answer be modified for the case of a charged particle moving in an elliptical
orbit ( semi-major axis isa and the semi-minor axis isb) for the case of electromagnetic radiation?
( one could also obtain the formula for the gravitaional radiation by treating the elliptical motion
as circular in infinitesimal parts and perform an integration over the ellipse) The formula derived
using the general theory of relativity was tested for the binary pulsar PSR 1913+16 by R.A.Hulse
and J.H.Taylor. They were awarded the Nobel Prize in 1993 .

Solution to Problem 1:
(a) The electric field is proportional toP/(4πǫ0) and so the energy density is proportional to
P 2/(4πǫ0) (where we have dropped a factor of4π) and so this whould be a factor in the result.
The other variables areω and the velocity of lightc as the wave travels with the speed of light ( note
power radiated per unit area is energy density× velocity.) Thus we write

Power radiated = (P 2/(4πǫ0))c
αωβ (1)

where α and β are to be deterimned by dimesional analysis. This is easily done as
(Length=L;Time=T)

Power radiated = Energy/T (2)

and if q is the charge then usingP = qL,

P 2

4πǫ0
=

q2

4πǫ0L
L3 = Energy × L3 (3)

Using the dimensions ofc = L/T andω = T−1, we getα = −3 andβ = 4 giving
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Power radiated = N
P 2ω4

4πǫ0c3
(4)

Where N is a numerical constant. The complete treatment basedon electrodynamics givesN = 1
3 .

(b) In hydrogen atom, the electrons circular motion can be thought of as two harmonic oscillators
moving perpendicular to each other and each radiating an amount given by Eq.(4) and so the energy
lost−dE

dt due to radiation is, whereE is the energy of the hydrogen atom is

2

3

P 2ω4

4πǫ0c3
(5)

For a hydrogen atom moving in a circular orbit of radiusr the energyE is the sum of potential
energy−e2/(4πǫ0r) and kinetic energymv2/2 wheree,m andv are the charge and the mass of the
electron and its speed respectively. We also havemv2/r = e2/(4πǫ0r

2). Using these we get

E = − e2

8πǫ0r
(6)

This leads to

dE

dt
=

e2

8πǫ0r2

dr

dt
= −2

3

e2r2ω4

4πǫ0c3
(7)

where we have usedP = er in tha above equation. Using

ω = (
e2

4πǫ0mr3
)1/2 (8)

and Eq.(7) we get

dr

dt
=

4

3

( e2

4πǫ0m )2

r2c3
(9)

this can be integrated to obtain the timeT taken for the electron to move fromr = 5 × 10−11m to
10−15m as

T =
((5 × 10−11)3 − (10−15)3)c3(4πǫ0m)2

4e4
(10)

this works out toT = 3.4 × 10−13s.
This was one of the arguments used against classical physicsas hydrogen atom is stable.

(c) For a binary system of massesm1 andm2 located at~r1 and~r2 respecitively the centre of mass
~rc.mis at(m1~r1 + m2~r2)/(m1 + m2). the dipole moment about any point~R is defined as

(m1(~r1 − ~R) + m2(~r2 − ~R)/(m1 + m2) (11)
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This equals

~rc.m − ~R (12)

which vanshes when~R = ~rc.m.
However the quadrupole moment does not vanish. Again from the analogy of electromagnetisc

radiation we expect the gravitational radiation to be proportional toQ2, whereQ denotes the strngth
of the quadrupole. The dimension of quadrupole isM × L2, M being the dimensions of mass. We
write the formula for the power emitted ,

Power emitted = NgQ
2Gαωβcγ (13)

whereG is the Newton’s gravitational constant andNg a numerical constant, which can not be
determined by dimensional considerations. It is easy to verify α = 1, β = 6 andγ = −5, giving us

Power radiated = Ngµ
2R4Gω6/c5 (14)

where we have replacedQ by µR2 as the quadrupole moment (µ is the reduced mass). The constant
Ng can only be obtained from General Theory of Relativity.

Note in this case we can multiply this by the dimensionless quantity Π = QGω3/c5 or any
funtion of Π. The expression Eq.(14) also uses the fact that the power radiated is proportional to
Q2. Something besides dimensional analysis is needed to get the result. The numerical constant is
Ng = 6.4.

(d) In the case of an ellptic orbit we have two harmonic oscillators of strengthea andeb. and thus
the power would be

1

3

e2(a2 + b2)ω4

4πǫ0c3
(15)

If we use eccentricity parametere defined byb2 = a2(1 − e2),we get the expression for the power
radiated as

2(1 − e2/2)

3

e2a2ω4

4πǫ0c3
(16)

For the case of gravitational radiation see a recent articleby C.Bracco,J.P.Provost and P.Salati in
ArXives (0811.0317)

Problem 2:
There is a famous analysis of G.I.Taylor, a British scientist who obtained the energy liberated by
an atom bomb detonated ( referred to as Trinity) by studying pictures from Life magazine, which
had published the mushroom developing at different times. This was obtained by using dimensional
analysis and an ingenious choice of variables. ( This was done in late 1940’s when the enrgy released
was still a classified information). This has been convertedinto a problem (with hints)
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Consider an explosion releasing a large amount of energy. Assume the shock wave produced in the
atmosphere is hemispherical. Find the radiusR as a funtion of the timet after explosion in terms of
the energyE released and other physical quantities relevent to the atmosphere and use dimensional
analysis. ( Use the fact theat energy released is large and the time in which the shockwave expands
is very small)

Solution to Problem 2:
The relevent physical quantities are the energy releasedE, time after the explosiont, the density of
air ρ0, the atmospheric pressureP0 andr the radius of the shockwave. One can form two dimen-
sionless constants using the above quantitiesΠ1 andΠ2 defined by

Π1 = r(
ρ0

t2E
)

1

5 ; Π2 = P0(
t6

E2ρ3
0

)
1

5 (17)

thereforer can be written as

r = (
t2E

ρ0
)

1

5 F (Π2) (18)

whereF is any function ofΠ2. Uptill now only straight forward dimensional analysis hasbeen
used. Now Taylor assumed that in the atomic explosionE, the energy released is very large and and
time t is very short and soΠ2 is a very small number and he appoximated Eq.(18) by

r = (
t2E

ρ0
)

1

5 F (0) = Na(
t2E

ρ0
)

1

5 (19)

WhereNa is numerical constant. Sincer as a function oft was known from the pictures pub-
lished in the Life magazine and the value ofρ0 = 1.25kg/m3, the only unknown quantity was
the energy releasedE in Eq.(19). Taylor got the result as 21 kilotons of TNT. ( 1 kilo of TNT=
4.18 × 1012Joules) This value was within10% of the actual value. When Taylor had obtained the
value using the simple analysis described above, the actualvalue was classified.
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